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Abstract— Future self-driving cars and current ones with
advanced driver assistance systems are expected to interact
with other traffic participants, which often are multiple other
vehicles. Object vehicle tracking forms a key part of resolving
this interaction. Furthermore, descriptions of the vehicle group
behaviors, like group formations or splits, can enhance the utility
of the tracking information for further motion planning and
control decisions. In this paper, we propose a probabilistic method
to estimate the formation and evolution, including splitting,
re-grouping, and so on, of object vehicle groups and the member-
ship conditions for individual object vehicles forming the groups.
A Bayesian estimation approach is used to first estimate the
states of the individual vehicles in the presence of uncertainties
due to sensor imperfections and other disturbances acting on
the individual object vehicles. The closeness of the individual
vehicles in both their positions and velocity is then evaluated by
a probabilistic collision condition. Based on this, a density-based
clustering approach is applied to identify the vehicle groups as
well as the identity of the individual vehicles in each group.
An estimation of the state of the group as well as of the group
boundary is also given. Finally, detailed numerical experiments
are included, including one on real-time traffic intersection data,
to illustrate the workings and the performance of the proposed
approach. The potential application of the approach in motion
planning of autonomous vehicles is also highlighted.

Index Terms— Vehicle group tracking, probabilistic collision
criteria, density-based clustering, autonomous vehicle motion
planning.

I. INTRODUCTION

IN THE march towards (semi-)autonomous driving, the task
of guiding the controlled vehicle in the presence of other

traffic participants remains a challenging problem. Therein,
tracking of moving objects from sensor information plays a
significant role. In particular, in public traffic, multiple other
vehicles evolve in the traffic scene with changing velocity and
positions. From the perspective of guidance and control of
the individual autonomously controlled vehicle (ACV), group
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tracking can facilitate safe decisions and control actions for the
current and upcoming maneuvers of the ACV. Group tracking
entails the dynamic identification and estimation of group
formation by merging attributes of individual objects, of the
evolution of their motion as a group or multiple groups as
well as the dissolution of groups by splitting [1], [2]. Group
tracking information can constrain the nature of the interaction
between the ACV and the other moving objects (primarily
other vehicles in traffic).

For our purposes here, a group of objects is defined as
a set of objects that have common movement (e.g. similar
velocities) and close geometrical proximity. Depending on the
ambiguity in the available measurement about the objects in
the group, two categories of approaches to group tracking can
be identified: (1) individual object-based approach [3], [4],
and (2) extended object-based approach. In the first case,
the measurement of the individual components in the group
can be easily differentiated. In the second case, a too-close
proximity between individual objects or overlapping sensor
information makes it hard to continuously distinguish individ-
ual objects. In the latter case, it’s better to track the group as
an extended object modeled with simple geometric shape like
a circle [5], ellipse [6], [7], rectangle [7], [8] or some arbitrary
shape [9], [10].

The extended object-based approach is usually used to
identify the vehicle object from sets of measurements,
e.g, a sparse laser point cloud. Data association approaches
like Multi Hypothesis Tracking (MHT) [11], Probabilistic
MHT (PMHT) [12], Probability Hypothesis Density (PHD)
approach [13], Joint Probabilistic Data Association (JPDA)
approach [14], or Random Finite Sets (RFS) [15] can be
used to assign the measurements to each identified object
vehicle. In addition, by considering the knowledge of the
geometry of the object vehicle model, for example fused
with camera images, the detected object vehicle can be repre-
sented by an extended object with an estimated spatial shape
(center and extent parameters) and dynamics (location and
velocity) [8], [16], [17].

For the individual object-based group tracking, interac-
tion among the individual components of the group can be
modelled by updating the group structure that results from
behaviors including the occurrence or merging and splitting
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or vanishing of the group or groups. Two types of models
have been used to describe the dynamic group structure:
transition model [4] and evolution model [3]. In the transition
model, specified Markov transition probabilities are used to
represent the possible changes in the group structure. In the
evolution model, the group association decisions are made
based on the evaluation of the closeness between the objects
within a group as well as the closeness between the groups.
The transition model allows a joint estimation of the group
structure as well as the individual object states [4], [18], while
the evolution model follows a hierarchical estimation pattern:
first estimate the individual object states, then construct the
group structure. The evolution model tracks the propagation
of the closeness information which gives more clues about
the potential inter-group and intra-group interactions and in
general, does not require pre-specification of transition proba-
bilities. While either approach entails more computational cost
at implementation than individual object tracking, the hierar-
chical group tracking approach offers tractable formulations
as we outline in this paper. The obtained group structure
information can subsequently simplify the motion planning
problems for autonomous vehicles as we discuss below.

In our earlier work [19], we proposed a deterministic
vehicle grouping method for groups of object vehicles that
are then used for redefining the obstacle collision constraints
for model predictive control (MPC) and guidance of an ACV.
Therein, we formed groups between detected object vehicles
based on a distance threshold defined by the overlap of
their elliptical collision fields. The identified vehicle groups
are then represented with the tightest/optimal hyper-elliptical
boundaries. The results of our computational experiments
showed that the vehicle group description with proper bound-
ary design can redefine the feasible collision-free field to
exclude undesired local minimums (for the motion plan) as
it happens at the intersections of the collision boundaries of
individual object vehicles. Later in [20], we refined the object
vehicle grouping method with a group structure evolution
model and applied a supervised learning method to reduce
the on-line computational efforts of generating the optimal
vehicle group boundaries. However, in these previous works,
uncertainties in the individual object vehicle (IOV) tracking
due to sensor imperfections and environmental disturbances
were not considered. Also, the closeness of the velocity of
individual objects, which is an indicator of the similarity of
their motion, was not used in the criteria for group formation.

In this paper, we propose a probabilistic multiple vehicle
grouping framework to track groups of IOVs with consider-
ation of their finite geometric size information and closeness
evaluation. This framework explicitly models uncertainty in
the estimation of the states of IOVs and groups. The main
contributions of this paper are:

1) Apply an evolution model to describe the update of
object vehicle group (OVG) structure.

2) Derive the probabilistic collision/closeness criteria
between any two IOVs with non-negligible geometric
size and shape information based on their state estima-
tion via Bayesian tracking. A simplified derivation is
also given for the case of Gaussian state distributions.

Fig. 1. Object vehicle grouping framework.

3) Based on the closeness evaluation, a density-based
method is applied to group/cluster the IOVs without
a prior guess about the number of groups.

4) The state of each OVG is determined by the weighted
distribution of the state of each IOV in the OVG.
The boundary of the OVG is calculated via approxi-
mation of the specific probability contours that consider
the distribution of each IOV in the OVG.

The rest of the paper is organized as follows. Section II
introduces the details of the proposed multiple vehicle group-
ing framework. It includes the modeling of the object vehi-
cle group, Bayesian tracking for the IOV states, closeness
evaluation, density-based grouping and the OVG state and
boundary determination. Section III details numerical exper-
iments that illustrate the workings and the performance of
the approach. These include the application of the proposed
approach to a real-time traffic intersection scenario in addition
to a simulated complex highway scenario involving several
vehicles. The potential application of the proposed method to
the motion planning of an autonomous vehicle is also dis-
cussed in this section. Conclusions are included in Section IV.

II. MULTIPLE VEHICLE GROUPING FRAMEWORK

The object vehicle grouping framework follows a hierar-
chical estimation scheme to determine the group structure
state G from the state of all detected object vehicles at
time k. The overall framework is illustrated in Figure 1.
The set denoted by X contains the states and geometrical
shapes for all object vehicles. It is obtained by Bayesian IOV
tracking given the measurement set Z from sensors. Then,
a closeness matrix Mc calculated via probabilistic collision
checking between each pair of object vehicles considering
uncertainties and their finite geometrical sizes and shapes.
Finally, a density-based clustering method (DBSCAN) with
a threshold ε is used to group/cluster the IOVs and determine
the group structure state G. Each part of the framework is
discussed in further detail in the following subsections.

A. Modeling of Object Vehicle Group

Assuming there are IOVs indexed from 1 to
NOV (NOV > 1) that are being tracked at time k, the object
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Fig. 2. Illustration of object vehicle group behaviors (number before dot is
vehicle index, number after dot is group index, 0 means no group).

vehicle group (OVG) structure state Gk is a collection of
labeled vehicle groups:

Gk = {G1,k, . . . , GNG ,k
}

(1)

where NG is the number of identified vehicle groups. A vehicle
group i is defined as the tuple:

Gi,k = 〈xG,i,k, SG,i,k , IG,i,k , BG,i,k
〉
, i ∈{1, . . . , NG,k

}
(2)

where xG is the state vector of the group that includes the
estimated positions (of a representative point, e.g. centroid)
and the velocities of the IOVs in the group as well as their
covariances. SG is a parameters set (or generally, an algebraic
function fs,G) that may be used to describe the current
shape/contour of the group when considered as an extended
rigid object. IG is the index set of the IOVs that belongs to
the group. All the components of the state vector XG are
determined by the states of the IOVs inside the group. BG is
the OVG behavior indicating the group structure change from
the last time step, which would be one of the following three
behaviors:

1) Behavior 1: Merge. It happens when independent object
vehicles or sub-groups merge in to the current group.

2) Behavior 2: Split. It happens when a group is split into
the current sub-group.

3) Behavior 3: Continue. It happens when the group com-
ponents stay the same.

Therefore, an evolution model of the object vehicle group
structure is given by

Gk = fG (Xk, Gk−1) (3)

where fG is the grouping function that includes both the
closeness evaluation and density-based grouping/clustering,
see Figure 1. An example of the evolution of OVG structure
is illustrated in Figure 2. Note that an individual group Gi,k

will be empty if there are no object vehicles inside it.
Behavior 1, or, respectively, Behavior 2, are usually acti-

vated by the condition that if the calculated probabilistic
collision value (after closeness evaluation) between any two
IOVs is higher, or respectively lower, than a threshold ε

(see the dashed edge connecting the IOVs in Figure 2). The
closeness evaluation is introduced in the Section II-C after we
discuss the formulation for IOV tracking.

B. IOV Tracking

For IOV tracking, we apply a Bayesian approach to estimate
the motion states and the sizes (by object rigidity assumptions)
of all the detected IOVs. By detected IOVs, we mean those
falling in the range of the sensing system and deemed of
interest for the tracking and guidance problem. Assuming there
are IOVs indexed from 1 to NOV (NOV > 1) being tracked at
time k, the IOV set X is a collection of labeled IOV tuples:

Xk = {
X1,k, . . . ,XNOV ,k

}
(4)

X j,k = 〈
x j,k, SOV , j,k

〉
, j ∈ {1, . . . , NOV } (5)

where x is the estimate of the motion state vector of the IOV
that includes the positions (a representative point, e.g. cen-
troid) and the velocities of the object vehicle as well as
their covariances. SOV is the parameters set (or an algebraic
function fs,OV ) used to describe the current shape/contour of
the object vehicle, e.g. this could be the length and width
for a rectangular description or the major and minor length
for an elliptical description. Here, we assume SOV and NOV

are already identified and we focus on the estimation of the
motion state x . Methods to capture SOV , NOV can be found
in [7] and [8].

The general evolution of the motion state and measurement
sequence of an IOV I can be written as:

xi,k = fm,i
(
xi,k−1, wi,k−1

)
(6)

zi,k = hm,i
(
xi,k , vi,k

)
(7)

where fm is a (nonlinear) function of the state x and process
disturbance/noise sequence w. z is the available measurement
most likely from observation cameras, or on-board distance
sensors (lidar). hm is a (possibly nonlinear) function of the
states x and measurement noise sequence v. The uncer-
tainties considered in this paper are mainly due to process
noise from environmental disturbances like wind, road or
un-modeled dynamics acting on the lateral and longitudinal
motion of the vehicle and measurement/sensor noise. Later on,
we will assume that these uncertainties are captured-well with
Gaussian distributions.

In the Bayesian approach to tracking the motion state of
an IOV i , one attempts to estimate the posterior probability
density function (PDF) pi(xi,k |zi,1:k) of the state xi according
to all the measurements zi up to time k. Assuming the
initial PDF pi (xi,0|zi,0) ≡ pi(xi,0) is available with no initial
measurement z0, then pi (xi,k |zi,1:k) can be obtained by a
two-step recursive loop: prediction and update.

In the prediction stage, if the required PDF pi (xk−1|z1:k−1)
is known, the prior PDF of the state at time k is predicted via
the following equation:

pi
(
xi,k |zi,1:k−1

) =
∫

pi
(
xi,k |xi,k−1

)
pi
(
xi,k−1|zi,1:k−1

)
dxi

(8)
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Note that pi(xi,k |xi,k−1) = pi (xi,k |xi,k−1, zi,1:k−1) is obtained
from equation (6) assuming a Markov process and the known
statistics of wi,k−1.

In the update stage, suppose a measurement zi,k is available,
it can be used to correct the prior PDF via Baye’s rule:

pi
(
xi,k |zi,1:k

) = pi
(
zi,k |xi,k

)
pi
(
xi,k |zi,1:k−1

)

pi
(
zi,k |zi,1:k−1

) (9)

Similarly, pi(zi,k xi,k) is obtained from equation (7) and the
known statistics of vi,k . The denominator term pi (zi,k |zi,1:k−1)
is given by:

pi
(
zi,k |zi,1:k−1

) =
∫

pi
(
zi,k |xi,k

)
pi
(
xi,k |zi,1:k−1

)
dxi (10)

Therefore, by following the recursive loop above, the pos-
terior density of the motion state x for each IOV can be
estimated. For a linear description of the motion and measure-
ment system (6) and (7), the analytical solution for the exact
posterior PDF can be obtained via the application of Kalman
Filter (requiring Gaussian noise v and w,) and Grid-based
Estimator (requiring discrete state space). For a nonlinear
description of the system (6) and (7), Extended Kalman
Filter or Unscented Kalman Filter, Approximate Grid-based
Estimator or Particle Filter can be used to approximate the
posterior PDF [21].

Without too much loss of generality, hereafter, x represents
the motion state (both position and velocity components) for
the centroid of the geometric shape of each object vehicle.
We will also use x to refer to just the position component
of the motion state (e.g. in illustrations), when there is no
ambiguity.

C. Closeness Evaluation

As the state of the IOVs are estimated by the posterior
PDF for the centroid of each vehicle (including uncertainty),
the Euclidean distance metric is not suitable to represent the
closeness between different IOVs. For such a case, the prob-
ability of collision between two IOVs can be applied to
measure closeness. Let Xi (xi,k) be the state space (position,
velocity and shape) occupied by IOV i at time k consider-
ing its geometric shape, e.g. an area described by an alge-
braic function fs,OV ,i (x). Then, collision between IOV i and
IOV j is defined by the condition C(xi,k , x j,k): Xi,k (xi,k) ∩
X j,k(x j,k) �= Ø. Then, the probability of collision between
the two IOVs is defined by the integral of the joint state
distribution of the IOV i and IOV j :

PC
(
xi,k , x j,k

) =
∫ ∫

IC
(
xi,k , x j,k

)
pi j
(
xi,k , x j,k

)
dxi dx j

(11)

where IC is the collision indicator function defined by:

IC
(
xi,k , x j,k

) =
{

1, if Xi,k
(
xi,k
) ∩ X j,k

(
x j,k
) �= Ø

0, otherwise
(12)

This formulation of probability of collision can be
implemented via Monte Carlo Simulations (MCS), which
are computationally expensive. With assumptions of Gaussian

Fig. 3. Example of the collision condition for two IOVs with rectangular
shape description in 2D (a is half length and b is half width).

distributions, an approximate closed-form solution was given
in [22] for pairs of small sized objects with one of which can
be reduced to a point. Then, the PDF value of the x in X(x) are
nearly the same as the one in the centroid of X(x). However,
in our case, the sizes of the IOVs are not negligible and such
approximations will not work. Therefore, we develop some
strategies to approximate the probability of collision between
two IOVs with non-negligible geometric sizes and shapes.

The first step is to approximate the collision indicator
function with a simpler description. Here, we rewrite the
definition of the collision condition of two IOVs (with indices
i and j) with non-negligible geometric sizes at time k as
C ′(xi,k , x j,k): xi,kXi j,k(x j,k), where Xi j,k (x j,k) is an extended
deterministic geometric space occupied by IOV j at time k on
which we lump the geometric shapes/sizes of both IOVs (with
indices i and j). Therein, IOV i is considered as a point.
An example of collision in 2D position space between two
IOVs with rectangular shapes is shown in Figure 3. One can
also similarly derive the extended shape Xi j,k (x j,k) for other
geometric descriptions like circles or ellipses [19]. Then, the
collision condition can be represented by an inequality in terms
of the relative distance between xi,k and x j,k . The collision
indicator function can be rewritten as:

IC
(
xi,k , x j,k

) =
{

1, if xi,k ∈ Xi j,k
(
x j,k
)

0, otherwise
(13)

Therefore, (11) can be modified as:

PC
(
xi,k , x j,k

) =
∫ [∫

xi,k ∈Xi j,k(x j,k)
p
(
xi,k |x j,k

)
dxi

]

× p j
(
x j,k
)

dx j (14)

As the inner integral of (14) constrains the range of xi,k

within Xi j,k(x j,k), we can define a deviation state variable
�x j,k ∈ Xi j,k (0) to replace xi,k :
∫

xi,k ∈Xi j,k(x j,k)
p
(
xi,k |x j,k

)
dxi

=
∫

�x j,k∈Xi j,k(0)
p
(
xi,k = x j,k + �x j,k|x j,k

)
d�x j (15)
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PC
(
xi,k , x j,k

) =
∫

�x j,k∈Xi j,k(0)

exp
[
− 1

2

(
�x j,k + mi,k − m j,k

)T (
�i,k + � j,k

)−1 (
�x j,k + mi,k − m j,k

)]

√
(2π)nx

∣
∣�i,k + � j,k

∣
∣

d�x j (17)

c =
exp
[
− 1

2

(
mi,k + �x j,k − m j,k

)T (
�i,k + � j,k

)−1 (
mi,k + �x j,k − m j,k

)]

√
(2π)nx

∣
∣�i,k + � j,k

∣
∣

(20)

mc,k =
(
�−1

i,k + �−1
j,k

)−1 (
�−1

i,k mi,k + �−1
j,km j,k

)
(21)

�c,k =
(
�−1

i,k + �−1
j,k

)−1
(22)

where Xi j,k (0) is the lumped space when x j,k is at the origin.
Then,

PC
(
xi,k , x j,k

)

=
∫ [∫

�x j,k∈Xi j,k(0)
p
(
xi,k = x j,k + �x j,k|x j,k

)
d�x j

]

× p j
(
x j,k
)

dx j (16)

This integral can be further simplified when the distributions of
the states of IOV i and IOV j are Gaussian and independent.

Proposition 1: Consider IOV i, with a point description
with state xi,k and IOV j with state x j,k and an extended
deterministic geometry description Xi j,k (x j,k)). If the states
xi,k and x j,k have Gaussian distributions, i.e., xi,k ∼
N(mi,k , �i,k ), x j,k ∼ N(m j,k , � j,k), and the state tracks of
IOV i and IOV j are independent, then (17), as shown at
the top of this page, where nx is the dimension of the state
x (generally comprising of the position and the velocity for
each IOV).

Poof: Let px (m, �) denote the PDF of a multivariate
Gaussian distribution for IOV state x . Given the independence
assumption:
∫ [∫

�x j,k∈Xi j,k (0)
p
(
xi,k = x j,k + �x j,k|x j,k

)
d�x j

]

× p
(
x j,k
)

dx j

=
∫

�x j,k∈Xi j,k(0)

[∫
px, j

(
mi,k + �x j,k,�i,k

)

× px, j
(
m j,k,� j,k

)
dx j

]

d�x j (18)

Using the fact that the product of two multivariate Gaussian
distributions is also a multivariate Gaussian [23]:

px, j
(
mi,k +�x j,k,�i,k

)
px, j

(
m j,k,� j,k

)=c· px, j
(
mc,k ,�c,k

)

(19)

where (20)–(22), are shown at the top of this page.
Using (19)–(22) in equation (18), we have:
∫ [∫

�x j,k∈Xi j,k(0)
p
(
xi,k = x j,k + �x j,k|x j,k

)
d�x j

]

× p j
(
x j,k
)

dx j

=
∫

�x j,k∈Xi j,k(0)

[
c ·
∫

px, j
(
mc,k,�c,k

)
dx j,k

]
d�x j

(23)

As the inner integral equals to 1, equation (17) is proved.

Remark 1: By following the redefinition of the collision
condition and Proposition 1, we can see that the problem
of evaluating the probability of collision between two IOVs
with non-negligible geometric sizes/shapes with Gaussian
distributed and independent states can be transformed into
one of calculating the integral of a combined multivariate
Gaussian density function (defined by equation (20)) within
a specified integral space (defined by Xi j,k (0)). Furthermore,
if the combined covariance �i,k + � j,k is diagonal and
Xi j,k (0) is a combination of closed integral ranges for each
variate of �x j,k , a closed-form solution can be found for the
probability of collision by evaluating (17).

Remark 2: For evaluation of closeness between IOVs via
the collision probability, the state variates are taken from
the IOV tracking. The closeness here includes not only the
“nearness” in positions but also the “similarities” in velocities
between the IOVs. Similar to the rectangles used to illustrate
the closeness in positons (in Figure 3 and discussions above),
a speed range can also be used to define the closeness
in velocities. With x interpreted as the motion state vector
(position and velocity), both aspects of closeness are already
considered above, including in the specification of the integral
space Xi j,k (0). Only if the nearness in both positions and
velocities are satisfied are any two IOVs considered close to
each other.

If the Gaussian distributed motion states of IOV i and IOV j
are dependent as is possible for cases with mutual interactions,
a different result that approximates the collision probability
equation (16) may be sought. However, we do not address
these cases in this paper. Some discussions in this direction
can be found in [22].

Furthermore, for the case of non-Gaussian distributed
motion states of IOV i and IOV j , whether these are depen-
dent or not, one may have to resort to MCSs to evaluate the
probability of collision directly from (16).

Finally, by applying the probabilistic closeness/collision
evaluation between each pair of detected IOVs, a closeness
matrix Mc can be assembled:

MC =
⎡

⎢
⎣

PC
(
x1,k, x1,k

) · · · PC
(
x1,k, xNOV ,k

)

...
. . .

...
PC
(
xNOV ,k, x1,k

) · · · PC
(
xNOV ,k, xNOV ,k

)

⎤

⎥
⎦ (24)

This matrix will be used in the grouping of IOVs in the next
sub-section.
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Fig. 4. Illustration of the DBSCAN grouping results (μ = 4). The edge
means there is density-connection between the IOVs. Only the group index
of each IOV is shown here. 0 means the IOV is SOV with no group index.

D. Density-Based Grouping/Clustering

Here, we adopt the Density-based Spatial Clustering
of Applications with Noise (DBSCAN) approach [24] to
group the detected IOVs by processing the closeness matrix
given by equation (24). The probability of collision (value
between 0 and 1) between the pairs of IOVs provides a
good one-dimensional closeness indicator that be used with
DBSCAN [25]. DBSCAN is widely applied in machine learn-
ing and data mining for clustering purposes due to its attractive
attributes:

1) The number of clusters/groups in the data set is not
required to be pre-specified.

2) Only two parameters are required: the closeness thresh-
old ε in the neighborhood of any object i and the
minimum number of other objects μ that are within the
threshold ε of object i .

3) It is suitable for arbitrarily shaped clusters/groups.
The key idea we adopt from this approach for vehicle

grouping is that for the main object components of an OVG,
at least a minimum number μ of IOVs should be con-
tained in the neighborhood of a given closeness threshold ε
(between 0% and 100%). Here, we emphasize that selecting
an appropriate ε is very important as it’s directly related to
the success of the grouping algorithm. For example, a too
small ε (≈0%) may lead to big groups with low-closeness
IOVs inside, and a too large ε (≈0%) may fail in group-
ing the IOVs even for those with high closeness. A proper
range for ε could depend on the situation (urban, highway,
intersection, etc). Here, we select ε to be 0.5 (average of the
collision probability of 0% and 100%) for our illustrations.
The selection of μ depends on the density of the objects.
These main object components in the group are defined
as core object vehicles (COVs). The closeness threshold ε
defines a density connection condition between two IOVs:
if PC (xi,k , x j,k) ≥ ε, IOV i and IOV j are said to be density
connected with each other. There can also be another kind of
IOV called border object vehicle (BOV) in the group that can’t
satisfy the minimum number μ requirement for being a COV
but can be connected with COVs. In addition, there can be
IOVs not connected with any COVs. These are considered
as single object vehicles (SOVs). An illustration of these
different kinds of objects is given in Figure 4. The algorithm is
detailed in [24].

Once the clustering/grouping is done, each IOV will be
labeled with its updated OVG index from 0 to NG . And all
the indices of the IOVs in OVG i will be stored in an index
set as IG,i . Furthermore, the group behavior BG,i can also
be determined by evaluating the OVG index for each IOV at
sequential time steps.

Although the DBSCAN approach is only applied here to
identify the OVGs and label the IOVs with their OVG index,
the motion state for OVG i xG,i at time k can be obtained
from the mixed state distribution of those IOVs in the group:

xG,i,k =
NIG ,i,k∑

j=1

ωG,i, j,k

∫
pIG,i,k ( j )

(
xIG,i,k ( j ),k

)
dxIG,i,k ( j )

(25)

where NI G,i,k is the number of elements in the index set IG,i

at time k. The weights for different IOV distributions can be
determined based on the closeness of each IOV to other IOVs
in the same OVG:

ω j,k =

∑

i∈IG,i,k \IG,i,k ( j )
PC
(
xIG,i,k ( j ),k, xi,k

)

NIG ,i,k∑

j=1

∑

i∈IG,i,k \IG,i,k ( j )
PC
(
xIG,i,k ( j ),k, xi,k

)
(26)

Finally, the shape of the OVG i at time k can be described
by the boundary of an area with a specified joint probability
distribution among all the IOVs in the OVGi , i.e. the set:

{
xk : PG,i (xk) = α, 0 < α < 1

}
(27)

PG,i (xk) = P

⎛

⎝
⋃

j∈IG,i,k

x j,k = xk

⎞

⎠ (28)

According to the inclusion-exclusion principle of set theory,
equation (28) becomes:

P

⎛

⎝
⋃

j∈IG, j,k

x j,k = xk

⎞

⎠

=
NIG ,i,k∑

j=1

Pj (xk) −
∑

J⊆IG,i,k|J |=2

P

⎛

⎝
⋂

j∈J

x j,k = xk

⎞

⎠

+
∑

J⊆IG,i,k|J |=3

P

⎛

⎝
⋂

j∈J

x j,k = xk

⎞

⎠− · · · + (−1)NIG ,i,k

× P

⎛

⎝
⋂

j∈IG,i,k

x j,k = xk

⎞

⎠ (29)

As calculating the intersection distribution probability among
the IOVs in the OVG requires multiple integrals (with the
order equal to the number of IOVs in the group), it’s hard
to evaluate the probability of collision via equation (29),
especially when NI G,i,k had a large value. Therefore, we need
a tractable approximation to (29). If we ignore the intersection
probability calculation, we obtain a conservative evaluation of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG AND AYALEW: PROBABILISTIC FRAMEWORK FOR TRACKING THE FORMATION AND EVOLUTION OF MULTI-VEHICLE GROUPS 7

Fig. 5. Illustration of the OVG distribution contour in a 2D position space.
The position states of the three IOVs are assumed to be Gaussian distributed.
a = 0.1 and a = 0.9. contours shown. Solid probability contours are
calculated by (29) while the dash contours come from (30).

the collision probability:

PG,i (xk) ≈
NIG ,i,k∑

j=1

Pj (xk) (30)

We say equation (30) is a conservative evaluation because the
probability is overestimated by simply adding the probabilities
based on the distribution of each IVO. This is known as the
Boole’s inequality or union bound [26]:

P

⎛

⎝
⋃

j∈IG, j,k

x j,k = xk

⎞

⎠ ≤
NIG ,i,k∑

j=1

Pj (xk) (31)

The OVG boundary is then obtained by drawing the probabil-
ity contour using numerical methods:

⎧
⎨

⎩
xk :

NIG ,i,k∑

j=1

Pj (xk) = α, 0 < α < 1

⎫
⎬

⎭
(32)

A comparison of the OVG boundaries determined by
equation (29) and (30) is illustrated in the example
in Figure 5. We can see the probability of the group
distribution is bounded by (30).

III. NUMERICAL EXPERIMENT

To illustrate the performance of the proposed object vehicle
grouping framework, we first include the setup and results
of a numerical experiment that represents a complex high-
way scenario. Several methods are compared for use in the
closeness evaluation and the salient aspects of the group
tracking approach are illustrated with this scenario. We then
present the results of the application of the proposed approach
to a real-time traffic intersection scenario from the Next
Generation Simulation (NGSIM) project database available
on the Research Data Exchange of the U.S. Department
of Transportation’s Federal Highway Administration [27].
In both scenarios, we assume a centralized surveillance view
of the IOVs from the ego-vehicle or roadside infrastruc-
ture, and illustrate the performance of the vehicle grouping
algorithm.

Fig. 6. Particle motion description for the IOV.

A. Complex Highway Scenario
1) Simulation Settings: In the highway scenario, we use a

kinematic particle motion model defined in the Frenet frame
for IOV state tracking purposes. See Figure 6 for the important
notations and the coordinate frame. This model has been
used in our previous works [28], [29] for motion planning
purposes. The reference path is define by its curvature κ(s)
as a function of the arc length s. We assume the reference
path is already known and the IOVs are going to follow
it (with their respective controlled dynamics that describe
forward motion like cruising or acceleration and lateral motion
like lane change). One possible description of the controlled
dynamics of the IOVs is:
⎡

⎢
⎢
⎣

ṡo

v̇s
t,o

ẏe,o

v̇s
n,o

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 1 0 0
0 −Ks1

1+Ks2
0 0

0 0 0 1
0 0 −Ky1 −Ky2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

so

vs
t,o

ye,o

vs
n,o

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0 0
Ks1

1+Ks2
0

0 0
0 Ky1

⎤

⎥
⎥
⎦

[
vs

t,o,re f
ye,o,re f

]
+

⎡

⎢
⎢
⎣

0 0
1

1+Ks2
0

0 0
0 1

⎤

⎥
⎥
⎦

×
[

wṡ,o

wy,o

]

[
yso

yye,o

]
=
[

1 0 0 0
0 0 1 0

]
⎡

⎢
⎢
⎣

so

vs
t,o

ye,o

vs
n,o

⎤

⎥
⎥
⎦+

[
1 0
0 1

] [
vs,o

vy,o

]

(33)

where, so and ye,o are, respectively, the arc length and lateral
position error of the IOV; vs

t,o and vs
n,o are, respectively,

the tangential speed and normal speed of the IOV along their
reference path. Ky1 and Ky2 are the proportional and integral
gains of a controlled OV tracking its reference lane ye,o,re f .
Ks1 and Ks2 are the proportional and integral gains of a
controlled OV tracking the reference speed vs

t,o,re f . We assume
that wṡ,o and wy,o are Gaussian disturbances perturbing the
input references vs

t,o,re f and ye,o,ref ; and vs,o and vy,o are the
Gaussian measurement noises on sensors for so and ye,o. Here,
we assume that the measurements are obtained without sensor
delay, faults or sensing range limitations. With such linear
dynamics models for the IOVs, a regular KF can be used to
estimate the states of the IOVs. Note that even more refined
implementations such as Interactive Multi-Model KF [30] and
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Fig. 7. Geometric shape of the IOV i in the numerical simulation (cs is a
constant time gap to adjust the safety margin).

TABLE I

PARAMETERS OF IOVS IN THE NUMERICAL EXPERIMENT

higher order models are also possible to use for IOV state
estimation and integrated with our grouping function/approach
as depicted in Figure 1.

As for the closeness calculation, we consider both the
closeness in positions and velocity in the two scenarios.
To calculate the closeness in positions, the geometric shape of
the IOV is defined as a rectangle with a car-like realistic size
(a for half length and b for half width). Also, in the numerical
experiment, we will add a safety margin csv

s
t,o,i that is related

to the velocity of the IOV i in its geometric length to mimic
human-driver like actions that keep a safe distance between a
front and rear vehicle, as shown in Figure 7.

For the closeness in velocity, we define a bound
[−�vt , �vt ] for the velocity difference between two IOVs.
This will factor in following and leading conditions in the
probabilistic inclusion/exclusion of IOVs in groups. After
the closeness evaluation, the OVGs will be identified via
DBSCAN w.r.t the closeness threshold ε and the minimum
number μ. Here we choose μ = 2 due to the small numbers
of IOVs (low density) in the present example, which considers
8 IOVs on a highway scenario (described below). Therefore,
in this case, the BOV and COV are the same. All the parame-
ters used in the numerical experiment are given in Table I.

The highway scenario we constructed is a sequence of typi-
cal highway situations, like cruising, overtaking, following etc,
are specifically selected to illustrate the nuances of the group
evolution for a span of 90 seconds. The reader is encouraged
to look at the state tracking (estimation) results for all IOVs
shown in Figure 8 at this point. These are elaborated further
in the next subsection.

We compare our proposed approach to closeness evalu-
ation and grouping in the highway scenario, we compare
our numerical integration (NI) method on the derived con-
dition (17) with the Monte Carlo Simulations (MCS) using

Fig. 8. States of the IOVs in a highway scenario. Top: relative positions,
Bottom longitudinal velocities.

Fig. 9. Group structure evolution for the highway scenario with application
of either the NI or MSC methods for closeness evaluation.

100000 samples (can approximate a probability accuracy up
to 0.001%). We also consider the approximation method for
small sized objects (ASO) proposed in [22] and described
earlier. In ASO, the collision probability is evaluated by (34),
as shown at the bottom of this page, where Vs is the volume
of Xi j,k (0).

2) Results and Discussions: First, we start with a com-
parison of the closeness evaluation methods. When applying
NI and MSC (with 100000 samples) in closeness evaluation,

PC
(
xi,k , x j,k

) = Vs

exp
[
− 1

2

(
�x j,k + mi,k − m j,k

)T (
�i,k + � j,k

)−1 (
�x j,k + mi,k − m j,k

)]

√
(2π)nx

∣∣�i,k + � j,k
∣∣

(34)
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Fig. 10. Closeness between IOV 3 and some of the other IOVs under
the Monte Carlo Simulation(MSC) method with 100000 samples, numerical
integration (NI) method, and the approximation method for small-sized
object (ASO).

Fig. 11. Closeness between IOV1 and some of other IOVs under the three
methods.

the same group structure evolution profile is obtained
(see Figure 9). However, no group structure evolution is found
in the ASO case (not plotted here); with ASO, the group index
of all IOVs remain at 0 as individuals. These can be explained
by the evaluated closeness profiles between each pair of IOVs
under the three methods, as shown in Figure 10 and Figure 11,
herein, the closeness evaluated by NI and MSC are almost the
same (with accuracy up to 0.001%). In addition, the RMS of
the errors between the closeness evaluation using MSC with
different samples and NI, ASO and NI for the IOVs shown
in Figure 10 and Figure 11 are given in Table II. As more
samples are used, the error between the closeness evaluation
MSC and NI become smaller, which demonstrate the validity
of our NI method. However, for ASO, the closeness is always 0
and the RMS error between NI and ASO is large. This is due
to the fact that the size of the IOV is too large compared with

TABLE II

RMS OF THE ERROR BETWEEN OTHER METHODS AND NI IN EVALUATING
THE CLOSENESS OF TWO IOVS SHOWN IN FIGURE 10 AND FIGURE 11

TABLE III

EXECUTION TIME OF THE ERROR IN EVALUATING THE CLOSENESS OF TWO

IOVS FOR 3168 RUNS UNDER DIFFERENT METHODS ON A NOTEBOOK
WITH INTEL I5-4200M 2.4 GHz PROCESSOR AND 4GB RAM

the distribution area covered by the uncertainties. From (34),
it’s obvious that ASO uses the probability density value at
the center of Xi j,k (0) to represent the density value for the
other locations in Xi j,k (0). This only works when the size
of object, i.e. the volume of Xi j,k (0), is small. Otherwise,
we obtain zero density value when the two objects are too
far away relative to the distribution area arising from the
uncertainties. Therefore, ASO is not suitable to use in cases
with non-negligible geometric sizes of the objects involved
(i.e, real highway vehicles).

The computational time for evaluating the closeness
between a pair of IOVs under the three methods are also sum-
marized in Table III (on a notebook PC with Intel i5-4200M
2.4 GHz processor and 4GB RAM). ASO is most efficient, but
as described above is least accurate. The proposed NI gives
a reasonably efficient resolution of the closeness evaluation
when a high accuracy of probability evaluation, e.g. smaller
than 0.01%, should be ensured. MSC is most accurate but is
unlikely to be useable for real-time applications.

In Figure 9, we can see the total number of OVGs iden-
tified evolves as 2-1-2-1-2-3-2-3-2-3-2, as the states for the
IOVs evolve differently. Initially, IOVs 1, 2, 5 and 6 are all
SOVs as they are far away from other IOVs in positions.
IOV 1 and IOV 2 are also different form other IOVs in veloc-
ity, see Figure 8. While IOVs 3, 4 are grouped in OVG 1
(see Figure 10 for the closeness values) and IOV 7, 8 are in
OVG 2 due to their closeness both in positions and velocity.

As time goes, SOV1 changes lane to overtake IOV 3, 4
around t = 10s and then IOV 3 starts to accelerate and move
towards SOV 5 and SOV 6. As a result, OVG 1 splits into
SOV 3 and SOV 4 around t = 20s, and OVG 2 becomes
OVG 1. During the acceleration, SOV 3 is caught up by SOV 1
and they temporally merge into the new OVG 1 at t = 27s.
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As IOV 1 tries to keep its fast speed, it decides to change
lane to follow the faster IOV 2 among the rest of the IOVs
to pass through the traffic jam formed by IOVs 5, 6, 7 and 8
(The details of the motion control decisions are discussed in
our other work [29]). Therefore, the OVG 1 split again at
t = 31s and SOV 1 and 2 merge into the new OVG 1 at
t = 33s, see Figure 11. Later SOV 3 decelerate to merge with
SOV 5 and SOV 6 to form a new OVG 2 at t = 45s. When a
faster IOV passes by a slower IOV through an adjacent lane,
we can see the rise of closeness between them, for example,
the closeness of IOV 1 and 6 and IOV 1 and 7 rises when IOV1
is passing through the traffic jam as can be seen in Figure 11.
However, as can be seen in Figure 8, the longitudinal velocity
gap between them is too large (two times larger than the
specified bound of the velocity difference �vt ) to significantly
increase the closeness.

After IOV1 pass through the traffic jam together with IOV 2
in OVG 2, it changes lane to overtake IOV 2 and then
OVG 2 splits into SOV 1 and SOV 2 at t = 74s. However,
IOV 2 moves laterally towards the lane occupied by IOV 1.
To avoid a collision, IOV 1 decelerates and change lane to
the right. When IOV 2 settles down, IVO 1 accelerates to
overtake it. During this collision avoidance process, we can
see the oscillation of the closeness value between IOV 1 and
IOV 2 in Figure 11 between t = 74 ∼ 85s. This is mainly due
to the rapid velocity change of IOV 1 to avoid a collision and
then overtake the slower IOV 2.

We can also generate the group geometry description for
this scenario. Figure 12 shows an example for the position
description sampled at time t = 15 and 60s. Here, we use a
belief contour with α = 0.5 to represent the distribution of
the OVGs. The OVG position center calculated by applying
equations (25) is also shown. Each IOV is labeled with their
group index behind their IOV index. We can see how the group
boundary contour and center position changes along with the
indices of the IOVs in the OVG from t = 15 to 60s, as shown
in Figure 12.

B. Application to Real-Time Traffic Intersection Data Set

For simplicity and to avoid duplication, in the intersection
scenario, we only apply our grouping function with the
NI method of closeness evaluation. We apply the group-
ing function to the vehicle trajectory data generated by
the NG-VIDEO software after processing a 15 min over-
head camera record of actual traffic in an intersection on
Lankershim Boulevard in Los Angeles, CA (data from [27]).
Here, we chose one segment from t = 5min23s to 5min52 to
show the typical vehicle grouping results as an example. The
position description of the OVGs are sampled at 6 frames,
as shown in IV. We can clearly see the group forma-
tion (OVG1) of a set of IOVs (IOV2∼ IOV6) from SOVs at
t = 5min23s to a unique group at t = 5 min 42 (IV (a)∼ (c))
when these IOVs stop before a red light. The closeness profile
between the front and rear IOVs in this case are not given here,
but it’s similar to the case of IOV 3 and IOV5 or IOV6 in the
highway scenario above with velocity synchronization (0 m/s)
and position proximity at the end. Then, more and more IOVs

Fig. 12. Example of relative position description of OVGs at different
time for highway scenario. See Figure 2 for adopted numbering convention.
(a) t = 15s. (b) t = 60s.

slow down to approach OVG1 with different velocities from
behind. Among these IOVs, the ones with similar velocities
and close distance merge into groups, as shown in the group
identities in Figure 13 (c)∼ (e). After IOV1 completes its left
turn, the light turns green, and the set of IOVs start to pass the
intersection with some distinct or some similar accelerations,
therefore, big OVGs split into small OVGs, as shown in IV (f).
We can see the grouping method successfully identifies the
IOVs with common and distinct motion and accordingly
adjusts the group identities in this intersection scenario.

C. Comments on the Application of Grouping to
Motion Planning for Autonomous Vehicles

As the group boundary represents the probability of the
distribution of the IOVs in the OVG, it can be used to
re-define the multitude of obstacle avoidance constraints that
arise in the real-time motion planning of autonomous vehicles
in uncertain public traffic involving many vehicles. Such plan-
ning frameworks were discussed, for example, our previous
works [28], [29] that discuss predictive control approaches
and even those of [31] that use rapidly exploring random trees.

In this paper, we considered probabilistic collision problems
involving IOVs with non-negligible geometric shapes and
derived the condition given in equation (16) and given a
simplified derivation in Proposition 1 for the case of Gaussian
distribution of the motion states. If we only apply the chanced
constraints derived from these results for collision avoidance
of the Autonomously Controlled Vehicle (ACV or ego-vehicle)
with each detected IOV, in the numerical optimization problem
of predictive motion planning, some undesirable local mini-
mums will result the intersections of the collision boundaries
of IOVs (with some closeness) that will trap the ACV from
finding better solutions for its motion plan. We have shown
earlier that for deterministic planning [19], [20], a good OVG
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Fig. 13. Example of position description of OVGs at different time for the intersection scenario under NI method in closeness evaluation. See Figure 2 for
the adopted numbering convention. (a) t = 5min23s. (b) t = 5min26s. (c) t = 5min42s. (d) t = 5min44s. (e) t = 5min48s. (f) t = 5min52s.

algorithm can help to tailor the feasible field to exclude
these effects. In principle, one can expect this to work for
the probabilistic planning case as well since the chanced
constraints (representing avoidance of IOVs and OVGs) can
be numerically transformed to the deterministic constraints for
the optimization problem to find a solution [32].

However, the real-time motion planning problem requires
a real-time solution of the group boundary generation, like
the ASO method. To determine the group contours for the
illustrations in this paper, we used numerical methods (integra-
tions or simplified solution mentioned in Remark 1) to sample
a set of points based on the collision probability evaluation.
While this represents the true boundary, its computation may
not be efficient for real-time implementation in all scenar-
ios. Therefore, in our continuing work, we approximate the
probabilistic collision condition and the contour of the OVGs
with conservative closed-form results, similar as the OVG
boundary for the deterministic case in [19] and [20], and apply
it in stochastic motion planning algorithms for autonomous
vehicles.

IV. CONCLUSION

In this paper, we propose a probabilistic multiple vehicle
grouping framework for tracking the evolution of groups of
individual object vehicles (IOVs) with the consideration of
their non-negligible geometric sizes and prevalent sensing
and motion uncertainties. Therein, the closeness between
any two IOVs, which is defined by a probabilistic collision
condition comprising of mutual proximity both in velocities
and positions as the main criteria for subsequent clustering
of detected vehicles into object vehicle groups (OVGs) whose
states are estimated by the weighted distribution of each IOV
in the OVG. The workings and performance of our proposed
framework are illustrated for a simulated complex scenario
and a real-time traffic intersection dataset. Comparison of the
probabilistic collision condition as derived and evaluated via
a numerical integration method with Monte Carlo Simulations
show that it can achieve very good accuracy with about
a 20x computational speed up. It is also highlighted that
while computationally more efficient approaches of close-
ness evaluation that ignore geometric sizes exist, they could
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not resolve group attributes and are not applicable for road
vehicles.

Continuing work focuses on finding better approximations
of the closeness evaluation to further reduce its computational
complexity and on determining the OVG boundary so that it
can be executed in real-time within stochastic motion planning
algorithms for autonomous vehicles. Other aspects that need to
be addressed (where the approach may fail) include analysis
of other types of uncertainty that could not be modeled as
Gaussian, such as most sensor range/view limitations, delays,
faults and clutter.

REFERENCES

[1] L. Mihaylova, A. Y. Carmi, F. Septier, A. Gning, S. K. Pang, and
S. Godsill, “Overview of Bayesian sequential Monte Carlo methods for
group and extended object tracking,” Digital Signal Processin, vol. 25,
pp. 1–16, Feb. 2014.

[2] K. Granstrom and M. Baum. (Mar. 2016). “Extended object track-
ing: Introduction, overview and applications.” [Online]. Available:
https://arxiv.org/abs/1604.00970

[3] A. Gning, L. Mihaylova, S. Maskell, S. K. Pang, and S. Godsill,
“Group object structure and state estimation with evolving networks
and Monte Carlo methods,” IEEE Trans. Signal Process., vol. 59, no. 4,
pp. 1383–1396, Apr. 2011.

[4] S. K. Pang, J. Li, and S. J. Godsill, “Detection and tracking of
coordinated groups,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1,
pp. 472–502, Jan. 2011.

[5] N. Petrov, L. Mihaylova, A. Gning, and D. Angelova, “A novel Sequen-
tial Monte Carlo approach for extended object tracking based on border
parameterisation,” in Proc. IEEE14th Int. Conf. Inf. Fusion (FUSION),
Jul. 2011, pp. 1–8.

[6] B. Ristic and D. Salmond, “A study of a nonlinear filtering problem
for tracking an extended target,” in Proc. 7th Int. Conf. Inf. Fusion,
Jun. 2004, pp. 503–509.

[7] K. Granström, C. Lundquist, and U. Orguner, “Tracking rectangular and
elliptical extended targets using laser measurements,” in Proc. 14th Int.
Conf. Inf. Fusion (FUSION), Jul. 2011, pp. 1–8.

[8] K. Granström, S. Reuter, D. Meissner, and A. Scheel, “A multiple model
PHD approach to tracking of cars under an assumed rectangular shape,”
in Proc. 17th IEEE Int. Conf. Inf. Fusion (FUSION), Jul. 2014, pp. 1–8.

[9] M. Baum and U. D. Hanebeck, “Shape tracking of extended objects and
group targets with star-convex RHMs,” in Proc. IEEE 14th Int. Conf.
Inf. Fusion (FUSION), Jul. 2011, pp. 1–8.

[10] J. Lan and X. R. Li, “Tracking of extended object or target group using
random matrix—Part II: Irregular object,” in Proc. IEEE 15th Int. Conf.
Inf. Fusion (FUSION), Jul. 2012, pp. 2185–2192.

[11] D. B. Reid, “An algorithm for tracking multiple targets,” IEEE Trans.
Autom. Control, vol. 24, no. 6, pp. 843–854, Dec. 1979.

[12] P. Willett, Y. Ruan, and R. Streit, “PMHT: Problems and some solu-
tions,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 738–754,
Jul. 2002.

[13] B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypoth-
esis density filter,” IEEE Trans. Signal Process., vol. 54, no. 11,
pp. 4091–4104, Nov. 2006.

[14] Y. Bar-Shalom and E. Tse, “Tracking in a cluttered environment with
probabilistic data association,” Automatica, vol. 11, no. 5, pp. 451–460,
1975.

[15] B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods
for multitarget filtering with random finite sets,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 4, pp. 1224–1245, Oct. 2005.

[16] S. Wender and K. Dietmayer, “3D vehicle detection using a laser scanner
and a video camera,” IET Intell. Transp. Syst., vol. 2, no. 2, pp. 105–112,
Jun. 2008.

[17] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Auto. Robots, vol. 26, nos. 2–3,
pp. 123–139, 2009.

[18] T. Chen, T. B. Schon, H. Ohlsson, and L. Ljung, “Decentralized particle
filter with arbitrary state decomposition,” IEEE Trans. Signal Process.,
vol. 59, no. 2, pp. 465–478, Feb. 2011.

[19] Q. Wang and B. Ayalew, “Obstacle filtering algorithm for control
of an autonomous road vehicle in public highway traffic,” in Proc.
ASME Dyn. Syst. Control Conf. (DSCC), Minneapolis, MN, USA, 2016,
p. V002T24A009.

[20] Q. Wang and B. Ayalew, “A multiple vehicle group modelling and
computation framework for guidance of an autonomous road vehicle,”
in Proc. Amer. Control Conf., May 2017, pp. 4932–4937.

[21] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[22] N. E. D. Toit and J. W. Burdick, “Probabilistic collision checking with
chance constraints,” IEEE Trans. Robot., vol. 27, no. 4, pp. 809–815,
Aug. 2011.

[23] K. B. Petersen and M. S. Pedersen. (2008). The Matrix Cook-
book. [Online]. Available: http://www2.imm.dtu.dk/pubdb/views/edoc_
download.php/3274/pdf/imm3274.pdf

[24] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proc. 2nd Int. Conf. Knowl. Discovery Data Mining (KDD), 1996,
pp. 226–231.

[25] H.-P. Kriegel and M. Pfeifle, “Density-based clustering of uncertain
data,” in Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2005, pp. 672–677.

[26] A. F. Karr, Probability, New York, NY, USA: Springer-Verlag, 1993.
[27] FHWA. (2016). NGSIM Program Database. [Online]. Available: https://

www.its-rde.net/index.php/rdedataenvironment/10023
[28] T. Weiskircher, Q. Wang, and B. Ayalew, “Predictive guidance and

control framework for (semi-)autonomous vehicles in public traffic,”
IEEE Trans. Control Syst. Technol., to be published. [Online]. Available:
http://ieeexplore.ieee.org/document/7820070/

[29] Q. Wang, B. Ayalew, and T. Weiskircher, “Predictive maneuver planning
for an autonomous vehicle in public highway traffic,” IEEE Trans. Intell.
Transp. Syst., submitted.

[30] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting
multiple model methods in target tracking: A survey,” IEEE Trans.
Aerosp. Electron. Syst., vol. 34, no. 1, pp. 103–123, Jan. 1998.

[31] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. Control Syst. Technol., vol. 17, no. 5,
pp. 1105–1118, Sep. 2009.

[32] S. A. Tarim, S. Manandhar, and T. Walsh, “Stochastic constraint
programming: A scenario-based approach,” Constraints, vol. 11, no. 1,
pp. 53–80, 2006.

Qian Wang (S’14) received the Diploma and mas-
ter’s degrees in vehicle engineering from the South
China University of Technology, Guangzhou, China,
in 2010 and 2013, respectively. He is currently pur-
suing the Ph.D. degree with the Applied Dynamics
and Control Research Group, Clemson University,
USA. His research interests include optimal con-
trol, predictive trajectory planning for autonomous
vehicles, and control allocation for vehicle actuation
system.

Beshah Ayalew (M’06) received the M.S. and Ph.D.
degrees in mechanical engineering from Penn State
University in 2000 and 2005, respectively. He is
currently a Professor of automotive engineering and
the Director of the DOE GATE Center of Excellence
in Sustainable Vehicle Systems, Clemson University.
His interest and expertise is in systems dynamics and
controls. He is an Active Member of the ASME’s
Vehicle Design Committee, the IEEE’s Control Sys-
tems Society, and SAE. He received the Ralph Teetor
Educational Award from SAE in 2014, the Clemson

University Board of Trustees Award for Faculty Excellence in 2012, and the
NSF CAREER Award in 2011. He was a recipient of the Penn State Alumni
Association Dissertation Award in 2005.


